Physics 208 — Formula Sheet for Exam 1

You may remove this sheet. If you do remove this sheet, then do NOT turn it it!

Force on a charge:
An electric field \vec{E} exerts a force \vec{F} on a charge q given by:

$$\vec{F} = q\vec{E}$$

Coulomb’s law:
A point charge q located at the coordinate origin gives rise to an electric field \vec{E} given by

$$\vec{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$$

where r is the distance from the origin (spherical coordinate), \hat{r} is the spherical unit vector, and ϵ_0 is the permittivity of free space:

$$\epsilon_0 = 8.8542 \times 10^{-12} \text{C}^2/(\text{N} \cdot \text{m}^2)$$

Superposition:
The principle of superposition of electric fields states that the electric field \vec{E} of any combination of charges is the vector sum of the fields caused by the individual charges

$$\vec{E} = \sum_i \vec{E}_i$$

To calculate the electric field caused by a continuous distribution of charge, divide the distribution into small elements and integrate all these elements:

$$\vec{E} = \int d\vec{E} = \int_q \frac{dq}{4\pi\epsilon_0 r^2} \hat{r}$$

Electric flux:
Electric flux is a measure of the “flow” of electric field through a surface. It is equal to the product of the area element and the perpendicular component of \vec{E} integrated over a surface:

$$\Phi_E = \int E \cos \phi \, dA = \int \vec{E} \cdot \hat{n} \, dA = \int \vec{E} \cdot d\vec{A}$$

where ϕ is the angle from the electric field \vec{E} to the surface normal \hat{n}.

Gauss’ Law:
Gauss’ law states that the total electric flux through any closed surface is determined by the charge enclosed by that surface:

$$\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

Electric conductors:
The electric field inside a conductor is zero. All excess charge on a conductor resides on the surface of that conductor.

Electric Potential:
The electric potential is defined as the potential energy per unit charge. If the electric potential at some point is V then the electric potential energy at that point is $U = qV$. The electric potential function $V(\vec{r})$ is given by the line integral:

$$V(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{l} + V(\vec{r}_0)$$

Beware of the minus sign. This gives the potential produced by a point charge q:

$$V = \frac{q}{4\pi\epsilon_0 r}$$

for a collection of charges q_i

$$V = \sum_i \frac{q_i}{4\pi\epsilon_0 r_i}$$

and for a continuous distribution of charge

$$V = \int \frac{dq}{4\pi\epsilon_0 r}$$

where in each of these cases, the potential is taken to be zero infinitely far from the charges.

Field from potential:
If the electric potential function is known, the vector electric field can be derived from it:

$$E_x = -\frac{\partial V}{\partial x} \quad E_y = -\frac{\partial V}{\partial y} \quad E_z = -\frac{\partial V}{\partial z}$$

or in vector form:

$$\vec{E} = -\left(\frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \right)$$

Beware of the minus sign.