Consider each of the following charge distributions. In each case, suppose you want to find the magnitude of the electric field for points along the x-axis, as a function of x.

For which of these cases would you want to use Gauss’ law?

(a) A uniformly charged solid insulating sphere (total charge Q) of radius R, centered at the origin.

(b) A charged solid insulating sphere of radius R centered at the origin, where the charge density varies with the distance r from the center according to:

$$
\rho(r) = \rho_0 \left(1 - \frac{r}{R}\right)
$$

where ρ_0 is the charge density at the center.

(c) A charged solid insulating sphere of radius R centered at the origin, where the charge density varies with the coordinate x:

$$
\rho(x) = \rho_0 \left(1 - \frac{|x|}{R}\right)
$$

where ρ_0 is the charge density at the center, but that the charge density does not depend on the y or z coordinate.

(d) A uniformly charged solid insulating cube of side L and total charge Q, with one corner at the coordinate origin, and the other corner at $(x, y, z) = (L, L, L)$.

(e) A uniformly charged solid insulating cube of side L and total charge Q, with the center of the cube at the origin, and the coordinate axes aligned perpendicular to the cube faces.

(f) A uniformly charged solid insulating rod of length L and total charge Q. Suppose the center of the rod is at the coordinate origin, and the rod is aligned with the x-axis.