Consider a long (supposedly infinitely long) line of charge with charge per unit length λ. We would like to find the electric field E a distance r from the line.

Suppose the electric field is radial (points directly away from the line of charge).

To find the field, you can use Gauss’ law. Pick a gaussian surface that is a cylinder of radius r and length L. Here is what you do: 1.) Calculate the flux of the electric field through the gaussian surface. 2.) Calculate the charge inside the gaussian surface. 3.) Set the flux equal to the charge divided by ϵ_0.

Hint: The surface area of the outside of the cylinder is $2\pi rL$. The surface area of each end cap is πr^2.

Multiple choice:

(a) $E = \lambda L$.

(b) $E = \frac{\lambda L}{2\pi \epsilon_0 r}$

(c) $E = \frac{\lambda}{2\pi \epsilon_0 r}$

(d) $E = \frac{\lambda L}{\pi r^2}$

(e) $E = \frac{\lambda \pi r^2}{\epsilon_0}$

(f) $E = \frac{\lambda}{\pi \epsilon_0 r^2}$

(g) $E = \frac{\lambda L}{2\pi \epsilon_0 r^2}$

(h) $E = \frac{\lambda}{4\pi \epsilon_0 r^2}$

(i) None of the above.

(j) All of the above.

Answer: __________________________