(1) Given this graph of $v(t)$:

(a) Calculate the total distance travelled

(b) Make a graph of $x(t)$.

(2) Suppose a particle has velocity given by

$$v(t) = A - Bt$$

where A and B are given constants. Assume the position of the particle at $t = 0$ is $x = x_0$. Calculate the position of the particle as a function of time.

(3) Suppose a particle has velocity given by

$$v(t) = 2k_1t + 3k_2t^2 + 4k_3t^3$$

where k_1, k_2 and k_3 are given constants. Assume the position of the particle at $t = 0$ is $x = x_0$. Calculate the position of the particle as a function of time.

(4) Suppose a particle has velocity given by

$$v(t) = \frac{\alpha}{\sqrt{t}} + \beta\sqrt{t}$$

where α and β are given constants. Assume the position of the particle at $t = 0$ is $x = x_0$. Calculate the position of the particle as a function of time.

(5) Suppose a particle has velocity given by

$$v(t) = A - Bt$$

just like in problem (2). Calculate the maximum value of x.

(6) The speed of a particle moving in one dimension is plotted as a function of time below. Calculate the position of the particle at (a) $t = 10$ s (b) $t = 25$ s and (c) $t = 40$ s.

(7) Suppose a particle has acceleration given by

$$a(t) = A + B t$$

where A and B are given constants. Assume the position of the particle at $t = 0$ is $x = x_0$ and that the velocity of the particle at $t = 0$ is $v = v_0$. Calculate the position and velocity of the particle as a function of time.

(8) Suppose a particle has acceleration given by

$$a(t) = A + B \sqrt{t}$$

where A and B are given constants. Assume the position of the particle at $t = 0$ is $x = x_0$ and that the velocity of the particle at $t = 0$ is $v = v_0$. Calculate the position and velocity of the particle as a function of time.