Consider three vectors \vec{A} and \vec{B} and \vec{C} as shown. You are given the following:

- The length of vector \vec{A} is 5 units and the angle between vector \vec{A} and the x-axis is $\theta = 53.1^\circ$. (Note — no calculator needed: $\cos \theta = 0.6$ and $\sin \theta = 0.8$.)

- The length of vector \vec{B} is 2 units and it points along the x-axis.

- The x- and y- components of vector \vec{C} are shown in the figure.

Calculate the following three vectors, and find which one is longest:

$$\vec{R}_1 = \vec{A} + \vec{B} + \vec{C}$$

$$\vec{R}_2 = \vec{A} - \vec{B} + \vec{C}$$

$$\vec{R}_3 = \vec{A} + \vec{B} - \vec{C}$$

Answers (show components using vector notation like we just did in class)

$\vec{R}_1 =$ ________________

$\vec{R}_2 =$ ________________

$\vec{R}_3 =$ ________________

Longest of the three is ______